
Pergamon 
J. AppL Maths Mechs, Vol. 61, No. 3, pp. 527-530, 1997 

© 1997 Elsevier Science Ltd 
All rights reserved. Printed in Great Britain 

PlI: S0021--8928(97)00066-X 0021-872S~ $24.oo+0.0o 

THE GENERALIZED-PLANE PROBLEM OF 
THE THEORY OF ELASTICITY ON THE ROTATION 

OF A RIGHT PRISM WITH A SQUARE CROSS-SECTIONt 

V. A. BUCHIN and I. V. PANFEROV 

Moscow 

(Rece~ea 23 May 1995) 

The problem of the gene "rahzed-plane deformation of a rotating long square elastic prism is solved. The ends of the prism are 
load free. A modification of Mathien's method for constructing the solution of this problem with mass forces is proposed. The 
proposed modification involves the use of the polynomial solutions of a biharmonic equation in addition to ordinary Fourier 
series. The existence of these polynomial solutions enables one to increase the convergence of the Fourier series substantially. 
The stressed state of the prism and the distortion of its faces are investigated. © 1997 Elsevier Science Ltd. All riots reserved. 

The method of double trigonometric series has been proposed [1] for solving the plane problem in the theory of 
elasticity for a recUmgle with arbitrary loading of the edges of rectangles and when there are mass forces. The 
weak convergence of the series is a drawback of this method. Another approach to investigating the plane problem 
in the theory of elasticity uses a superpositioning of  ordinary Fourier series along one or other of the coordinates 
(Mathieu's method) where each term of these series satisfies a biharmonic equation. A review of  the papers 
associated with the development of this method for solving plane problems is given in [2]. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  A N D  
T H E  M E T H O D  O F  S O L U T I O N  

A long isotropic elastic prism with a square cross-section is rotated at a constant angular velocity m around the 
z axis which passes through the centre of its cross-sections. The ends of the prism are load free. We shall solve 
the problem of the generalized-plane deformation of this prism in a rectangular system of dimensionless coordinates 
x, y referred to the half-length of the side of the square with its origin at the centre of the square cross-section. 
The x andy axes are directed parallel to the sides of the square and the lateral faces of the prism are the surfaces 
x = _ 1 andy  = _+1, respectively. The equilibrium equation and the equation for the compatibility of the strains 
which describe the generalized-plane deformation of the prism under investigation have the form 

~Oxy ~°xv ~ v v  3a~ +----~y + xP = 0, 3x ----~--~ +'--'~'-y +yP=O 

b2ex ~ ÷ ~2e.~ ' _ ~2ex v (1.1) 
- ~x~ ' F'gzz = Cz' P = pt0212 ~),2 bx 2 

We will write the relation between the stresses and the strains in the form 

E(I - v 2 )-I £xx = axx - v(l - v) -! (~)v - v(l - v 2 )-I Cz 

E(I - v 2 )-I E).). = o).y - v(l - v) -I Oxx - v(l - v 2)-I C z 

E(! -v2)- I£xy = 2 ( 1 - v ) - I o ~ . ,  Eezz =azz -V(axx +Cyy) 

(1.2) 

Here E is Young's n~todulus, v is Poisson's ratio, p is the density of the material, to is the angular velocity of rotation 
of the prism and I is half the length of the sides of the square cross-section of the prism. 

The constant Cz is determined from the condition that the resultant force on the ends of the prism is equal to 
zero 

l ! 

f f a,,  dy=0 (1.3) 
-I -I 
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We will write the boundary conditions on the lateral surfaces of the prism as 

o ~ = ~ , = 0 ,  x=+-l ;  o , , = o x y = 0 ,  y = + l  (1.4) 

Taking account of the symmetry of the problem, the exact solution of Eqs (1.1) and (1.2) can be written in the 
form 

(~=(x,y)= P(x 2-I) 4.Dl(x 2_I_y2)+ 
2(l-v) 

+D2(6x2y 2 -3y 4 +x 4 -I)+M+ ~, [fn(x,y)-(pn(x,y)] 
n=l 

fn (x, y) = cos(anx){Cl, n ch(any) + C2.n [2a~ I ch(any) + ysh(any)]}, 
a n = xn, n ~> 1 (1.5) 

(P n ( x, y ) = COS( O~n)'){ Ci, n ch({~nX)+ C2,nx sh ( ff.nX ) } 

vxyP _D24(xy3 +x3y)+ ~, [¥n(x ,y )+Wn(Y ,X)]  Oxv(x 'Y)= l - v - 2 x y D I  n=! 

Wn ( x. y) = sin(anx){Ci, n sh(any) + C2., [ a :  ! sh(any)  + ych(anY)]} 

Here D1, De, C1~,, Cz~ are constants which are to be determined during the solution. The expression for on(x,y) 
is obtained from the formula for calculating %(x,y)  by the cyclic substitution (x,y) -* (y,x). 

In formulae (1.5), the first term (which is proportional to P) defines a particular solution of Eqs (1.1) and (1.2) 
with mass forces. The other terms satisfy the homogeneous system of equations (1.1) and (1.2) which, as is well 
known, reduces to a biharmonic equation. 

We put 

vP 
D~ + 4D 2 = ~ (1.6) 

2 ( l - v )  

In this case, the expression %y contains the polynomial --4D2(x3y + xy 3 - 2xy) in addition to Fourier series. 
By virtue of the symmetry of relations (1.5), it is suff~ent to satisfy the boundary conditions on the lateral surface 

x = 1. The remaining conditions (1.4) and, also, the condition that the vector of the moment acting in cross-sections 
of the prism is equal to zero are automatically satisfied. 

We now expand the hyperbolic functions in Fourier series in the following manner 

ch(o~ny)=ly2otnshtxn + ~. ! bn.m COS(0tmY) 
m=0 (1.7) 

ysh(o~ny)=ly2(OZnchO~n +Shah)+ ~. b2.mCOS(OLmy) 
m = 0  

The order of the asymptotic decay of the coefficients bl~n, b e  with respect to m is equal to m -4. 
When the formulae 

y_y3= ~ Smsin(amY), am=ran, $m=_12(_ l )m( f f ra )  -3 (1.8) 
m= I 

2y2 _ y4 = 7 + 48 ~ (-1) m (xm) -4 cos(amY) 
15 m--I 

are taken into account, we conclude that the equation %y(1,y) = 0 reduces to the system 

4D2s m + CI. m sh an, + C2. m ( a ;  I sh a m + ch ¢~m) = 0, m = 1,2 .... (1.9) 

In the equation o=(1, y) = 0, we expand the hyperbolic functions in Fourier series and, also, the term 
2 4 3D2(2y - y  ) in accordance with formulae (1.7) and (1.8). 

As a result, we obtain the system of algebraic equations 

/)2144(-l)ma~ + ~ (-l)n{CI.nb~.m +C2"n(2a;lb~'m +b2'm)}- (1.10) 
n=[ 

-Ci,mch0~ m -C2.mShO~ m =0 ,  m = l , 2  .... 
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D] =l ~=l (-l)n {Ct,n(Xn shO~n + C2,n(3ShO~n +(Xn ChO~n)} 
(1.11) 

3 n=l (-1) {CI.nb,~, 0 +C2.n(2an b,~,o 

Equation (1.6) cl(xses the system of infinite algebraic equations for determining the constants C1~, C2tn, D1,/)2 
and M. An expanskm of the functional equation o,,(1,y) = 0 in the basis functions y 2, 1, cos(amy) was used in 
deriving the system of equations (1.10) and (1.11). 

Note that the convergence of the ordinary Fourier series (1.5) is faster, the greater the order of the asymptotic 
decay of the free tenms (which are proportional to D 2 with respect to m and the coefficients blain, b2tn of the infinite 
system of equations (1.10) and, also, the free terms (4D2a,n) in system (1.9). In the given case (when there are two 
polynomials with indefinite constants D 1 and D 2 in the solution (1.5)), the order of decay of the free terms and of 
the coefficients bln~,,, b2tn in system (1.1) is equal to m -4. In system (1.9), the order of the decay of the free terms 
is equal to m -3. Calculations show that the solution (1.5), (1.6), (1.9)-(1.11) which has been constructed possesses 
a very high convergence. 

The constant C2 is determined from condition (1.3). 
The dimensionless displacements (divided by/)  are calculated using the formulae 

* _ ~  * Y 
ux(x,y)-~ e~('q,y)dq, uy(x.y)= ~ eyy(X,~)d~ 

0 0 

2. R E S U L T S  O F  C A L C U L A T I O N S  

It was noted in the preceding section that, when v = 0, the solution of the problem has the form 

Oxx = 1p(x2_l). O.,=-Ip(y2-1), 0 =Ozz=O 

In this case, the faces of the prism x = _ 1,y = - 1  remain plane when the prism is deformed. 
It is obvious that the shear stresses in the prism under investigation depend very much on Poisson's ratio v. 
Below, we presem the values of the dimensionless stresses (divided by P) at certain characteristic points of the 

cross-section of the prism when v = 0.5 and L = 50 (the number of the term at which the sums of the Fourier 
series are formed) 

(x;,y) (0; O) (0; 1) (0.4; 0.4) (0.6; 0.6) (1; 0.9) (1; 1) 
o ~  x 104 6410 893 4909 3312 0 1 
o~yx 104 6410 0 4909 3312 817 1 
a~y x 105 0 0 6466 9707 1 0 
o ~  x 104 3076 -2887 1575 -21 -2925 -3332 

Note that, when L, ~> 15, the results are practically identical. 
We now present the results of a calculation of the stresses in the case of a square prism (l = 10 mm) made of 

11 2 2 beryllium [3] (v = 0.02, E = 3 x 10 N/m, p = 1.8 g/cm ) which rotates at an angular velocity ea = 104g s -1 

(x;y) (0; o) (0; 1) (0.6; 0.6) (1; 1) 
o ~  x 104 5029 4916 3202 0 
o~y x 104 5029 0 3202 0 
o~, x 104 0 0 19.81 0 
o*= x 104 67.82 -35.01 -5.24 -133.3 

as well as the dimensional values of the displacements ux(1, y) and uy( 1, y) of the face x = 1 

y 0 0.25 0.5 0.75 1 
Ux, grn 1.96 1.96 1.97 1.98 1.98 

gm 0 0.73 1.36 1.81 1.98 
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